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GROUPS OF HOMOTOPY EQUIVALENCES(I

by

Donald W. Kahn

The set of homotopy classes of homotopy self-equivalences

of a topological space forms a group with a multiplication

induced from composition. This group is important in algebraic

topology, both for aesthetic reasons and because of its connection

with the problem of finding a complete set of homotopy invariants.

(In general, a Postnikov system overdetermines the homotopy type

of a space.) Nevertheless, relatively little work has been done

towards determining these groups. They are known, of course,

for spheres and Eilenberg-MacLane spaces, and they have been

studied in certain special cases by Barcus and Barratt (2).

The primary purpose of this paper is to obtain some

information on these groups in general. The method is inductive,

and it is connected with the Postnikov procedure of decomposing

a space according to homotopy groups. I actually consider two

different groups of homotopy equivalences, the first being the

ordinary one and the second being a quotient of it by those eq)Ai-

valences which induce the identity isomorphism on homotopy groups.

In the absence of any structure theory for non-Abelian groups

(which may possibly be infinitely generated), it seems impossible

to determine these groups exactly. However, I can determine them,

up to a series of extensions. The organization of the paper is

as follows: section 1 contains some preliminaries and the basic

definitions. In section 2, I establish the basic exact sequences.
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The section 3 contains some elementary applications, as well as

a determination of the groups in some special cases (such as

the terms in a Postnikov decomposition of a sphere).

1. Preliminaries

Throughout this paper, all spaces will have a base point,

which will be preserved by maps (and homotopies) unless other-

wise mentioned. For sections 2 and 3, we shall have to assume

that the spaces have the homotopy type of a 1-connected complex.

We denote by 9 (X) the group of homotopy class of homotopy

equivalences from X to X

I do not know what functorial properties 19(X) has in

general. However, we have the following elementary fact.

Prop. 1.1 is a contravariant functor on the category of

spaces which have the same homotopy type as a fixed space X

and maps which are homotopy equivalences. That is, if f : X->Y

is a homotopy equivalence, there is a homomorphism (2)

(9 f (Y) ->,y (X) such that

1.) Y (Id.) - Id.

2.) If Q.: Y -> Z is a homotopy equivalence,

3(g.f) a f) (g)

Proof: If (a) e 9 (Y), then set * (f) ( f 1. { -f}

Def. 1.1 Denote by 1 (X) the subset of (X) consisting of

those homotopy classes whose elements induce the identity iso-

morphism on the homotopy groups of X

Prop. 1.2 M1 (X) is a normal subgroup of 3 (X).
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rof:." C1 (X) is clearly a subgroup. If {a) Ci(x)

and {Y)}e (X), it is clear that a.XY -1 induces the

identity isomorphism on homotopy groups, so that
* Y{a}{•)•I e a zx

Def. 1.2 Denote j M - M/

Remark: It is easy to construct examples for which

1 IMXM

Now, suppose X is a fibre space over B (by which we

mean that there is a map p : X -> B which satisfies the

covering homotopy property for maps of any space into B). We

consider homotopy equivalences of X which cover the identity

map of B . That means we have a commutative diagram

X c X

\p 
p

B

If 4 and a' are two such homotopy equivalences, then a' o a
-1

again covers the identity. A homotopy inverse a for a map a

covering B is a map a-1 which covers B so that a 1. a
-1

and a-a are fibre homotopic to the identity.

Prop. 1.3 Fibre homotopy classes of homotopy equivalences

a which cover the identity on B form a group, under composition.

We denote this group by qp(X) . There is a natural homo-

morphism F ( (
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Proof, Consider two maps a and a' as above, and denote

their fibre homotopy classes by {al and {W') . Clearly,

a.at is a homotopy equivalence which covers the identity. One

easily checks that {at.a} is independent of the choices of

representative in {al and (W1}, so that these classes compose.

Inverses exist by definition.

The map e F associates with every fibre homotopy equivalence

class the corresponding homotopy class.

Remark: In Prop. 1.3, I have assumed the existence of inverses

for fibre homotopy equivalences, such that the two compositions

are fibre homotopic to the identity. In the case which we shall

consider in section 3, the existence of these inverses will

follow from a theorem of A. Dold (5).

Next, we define Postnikov systems and discuss their basic

properties.

Def. 1.3 Let X be a space (which is assumed to be connected).

A Postnikov system for X consists of a family of spaces Xn #

n > 0 , maps 1-rn Xn -> Xn-1 and Pn : X -> X no such that

1. If X is k-connected, X, - point for i < k .

2. IT n : Xn - n.1 is a principal fibre map, with

fibre K(T(n (X), n).

3. pn is an n-equivalence.

4. 7rn" Pn - Pn-1 *

We denote the system by (Xno pno Irln

Then the following theorem is known (see (6) and (7)).



Theorem 1.1

Let X and X' be spaces of the homotopy type of 1-connected

complexes. Let f : X -> . Then there are maps

f I Xn X for any Postnikov systems {Xn 'a"n n nd

(Xn, 'TT P' n } for X and X' (resp.), such that
n

'-Tn' " fn f en-1 " *Tn

and

"n * n n

If the k-invariants (images of the fundamental classes
nf

under transgression) are denoted kn and k , we have

.- k -f kin
ni kn n-2

where fcn- is the coefficient homomorphism induced by the
n-i

map f• :1rn-1 (X) -- >,'Yn.(X')

If f, " X -> X1 and f 3 3 , then f - • for all

n > 0 . (In fact, any maps which satisfy the same conditions

as fn and n are homotopic.)

We then have

Cor. 1.1 If f is a homotopy equivalence, then each fn is

also a homotopy equivalence.

Prop. 1.4 Let X be as in Theorem 1.1. Then the correspondence

f -"> fn defines homomorphisms

S' 8(xX ) I n > 0
* .N t9N(X) - Y-->N(Kn) -

Proof: By Cor. 1.1, is a homotopy equivalence. SinceIf



fn is determined up to homotopy by the homotopy class of f ,

the map is well-defined. If f e i(X) , it is clear that

f n egI(Xn)' Hence, r N is well-defined. Ve must show that

is a homomorphism. Let fl, fa : X -> X be homotopy equi-

valences. Then, we have a homotopy commutative diagram

X f >X f* >X

Xn (f)p Xn i.pn

and a homotopy commutative diagram

X (2fi'fn > X

n n

Thus, as in Theorem 1.1. we must have (fs*fl)n -= (fs)n'(fi)n

(That is to say (fg'fl)n and (fa)n'(fl)n are both induced

maps on Xn for f 2 .fl, and hence they are homotopic).

(See (7)).

It follows that P N is a homomorphism.

2. The Exact Sequences:

The purpose of this section is to show how one can determine

the groups defined above, up to a sequence of extensions. The

procedure is practical only when there are a finite number of

extensions and only when certain information about the spaces in

question is known. I will illustrate such cases in section 3.

For the present section, recall that

I
r
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(K(ar,.)) - Aut ('r)# 1(K(7('Wm)) - 1. and

SN)H(K(I,m)) - Aut(IT). Thus, we know these groups for the

first non-trivial term of a Postnikov system {Xn, pn . } )

for a space X (which is assumed to have the homotopy type of

a 1-connected countable complex). We shall now construct exact

sequences which determine 9 (Xn) (or0N(Xn)) in terms of

S(Xn.1) and other information about the Postnikov system, at

least up to extension. Thus, we shall determine the groups

C+(Xn) inductively, modulo some extensions.

In section 1, we defined a homomorphism P :8(X) --- >L(Xn).
Since for any fixed i > 0, the terms Xis jJ < i form a

Postnikov system for Xi, we have homomorphismS 9:g (Xi)--->VXj).

We shall be particularly interested in

n (Xn) -- (Xn1) n > 0

(We define N in a similar way.) We plan to analyze the

kernel and image of this homomorphism.

We suppose that X is (m-1) -connected, and that n > mi

Lemma 2.1 Consider P n :(Xn) -- > r(Xn 1 ) We have

IM(en) . {{fn.1) ,a(Xn.01) 3 c a Aut(.r~n(X)):)fckn+1=f*n~ kn*1)nn- +1}

where kn+l a Hn+l(Xn. 1 ;lrn(X)) is the k-invariant and fc

is to be interpreted as a coefficient homomorphism.

We denote Im(en) , F(Xn.1).

Proofs Consider the diagram

K(: (rn(X), n) - X X n' K(In(X). n)- -- n fn ,

n-1 Xn-1
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where i is the injection of the fibre. If there is a map

fn s X -- Xn which makes this diagram commutative, then

as is shown in (6),

€ nn+1
(fn)c knl f- 1 k

n n
Rence, if (fn-.1  is an image under e n it belongs to the

right-hand side of the equation which we are proving. On the

other hand, suppose {f n-1 belongs to the right-hand side.

Then there is f c e Aut ( (X)) so that fc kn+l . f k n'1

Taking fc t K(Tr n(X). n)-- KTW-n(X), n) to be a fibre map,nn
we may construct a commutative diagram

f

x P1 n-1 X -

kn+1

K, K(17-n(X) ,n) > K (qIT'n (X), n)

where En+l is homotopically equivalent to k n+. Regarding

k n1 and jn+l as maps into classifying spaces, we get a

commutative diagram

R > Xn n

j, n f n-1i n

Xn > Xn-1

Varying kn+l by homotopy changes, Xn by bundle equivalence.

Hence, there is a homeomorphism h such that

x h 2
x Xn n

n-1
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commutes, so that we may define fn a h • f . Then f n makes
our original diagram commutative, so that (f n1) is in the

image of . n . (fn is a homotopy equivalence because it follows

from the five-lemma that f induces isomorphisms on homotopy

groups, and we may then apply Whiteheadts theorem.)

The determination of ker(eA) requires more work. Recall

that (by Prop. 1.3) for a given Postnikov fibration

IT n n X n-1 we have a group of fibre homotopy classes

of fibre homotopy equivalences. ý!e note the following facts:

Eachir n : X -n X,_ may be taken as a principal fibre bundle

with group K(TT-(X),n), and paracompact base (the base may be
n

built from path spaces). Each T rn i X n > Xn-1 is locally

trivial. We then have the following

Prop. 2.1 (A.Dold). If f : Xn -> Xn is a homotopy equi-

valence such that 7r-n . f * Tn, then f is a fibre homotopy

equivalence.

Proof: See Theorem 6.1 of (5).

As in Prop. 1.3, we conclude the following

Prop. 2.2 The set of fibre homotopy classes of homotopy equi-

valences f : Xn -> Xn, such that 77 n * f ='W1n forms

a group, which we denote* %?F (Xn)

Lemma 2.2 There is a homomorphism

e F 1 ? F (Xn) (Xn)

whose image is ker( P ) .

Proof. If {fa £ F f is a homotopy equivalences

whose homotopy class we denote by /OF(f). Both p(f) pFg)
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and •F{f.9) are represented by f.g, so that F is a

homomorphism.

If {f) Im( F)£ {fM contains a map f J'rT f iT.

Thus, (f) e ker(e). If {f} e ker() ) T~f e •f'•, and by

the covering homotopy property, we may choose ? f so that

o r n " Thus, Mf} s Im

Lemma 2.3 90F(Xn) is isomorphic, as a set, to a subset of

Hn(X ;n 'n (X)). The multiplication in ý'F(Xn) is given

explicitly by the action of the fibre K(T n(X),n) on Xn (see

proof). The subset of Hn(Xn; lTn(X)) is determined by the

inclusion of the fibre i : K(1'In(X),n) -- Xn n
Proof: Let h : Xn --- > Xn be a fibre homotopy equivalence.

Then, if x s Xn, x and h(x) belong to the same fibre. Hence,

there is a unique a s K(l n(X),n) such that a'x - h(x). The

correspondence x -> a defines a map

h* Xn --- > K( n(X), n)

so that h** i(x) h*(i(%))'i(Z) is a homotopy equi-

valence on K(Wrn(X),n) . Conversely, if

S* : -, K(rn(X),n)

is such that * i is a homotopy equivalence, one easily

checks that 3 is a homotopy equivalence, where (%) - ý(%).'

It is easy to see that, under these two correspondences,

homotopy goes over to fibre homotopy and visa versa. The

correspondences are clearly inverses of one another, so that

&(X) is in 1-1 correspondence with the subset of
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h Hn (Xn jTrn (X)) such that h* * i is a homotopy equi-

valence.

Consider 2 fibre homotopy equivalences f and g . We may

write g.f as

Xn f * xl > K(1Tn,(X) n) x X 4- - X 9*x>K(X n(X),n) x X

where /4 denotes the action of the fibre on Xn . This shows how

the multiplication in •F(Xn) viewed as a subset of

Hn(Xn;1 rn(X)), is determined by the action of the fibre.

Lemma 2.4 I(Xn) = ker(eF) is the group of those fibre homo-

topy equivalences which are globally homotopic to the identity.

It is described by the action of K(T1n(X),n) on Xn (see proof).

Proof: Let a e T(Xn ). Then PF(a) - (Id.), i.e. any

f e a is globally homotopic to the identity. Conversely, if

f e a is globally homotopic to the identity, a e ker(PF).

As above, we may write f as the following composition

X f Il K(Tr-n(X),n) x xn _ > nXn n /x

Suppose we denote by 0-T: H* (X n; n (Xn)) >M'Xn , Xn] the

operation described by the preceeding formula. Then, we can

say that {fM e 3(Xn), if and only if T (f*) ( {Id.)

Summarizing what we have proved, we have

Theorem 2.1 : Let the space X have a Postnikov system

(XTn, pn} . Then, for any n > 3, we have an exact sequence.

1 - ker(C) (X n > F(xn*1 ) 1

and an exact sequence
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1 -- >I (X. n , p(X n) *4> ker(ý) -> 1

YOF(Xn) in in 1-1 correspondence with a subset of Hn(Xnl1rn(X)).

The multiplication in qF(Xn) is explicitly determined by the

ma p/"Z :K(T1rn(X),n) x Xn -- > Xn . The subgroup I(Xn) is

also determined explicitly by /•4.

Next, we consider the groups •N(Xn) . To simplify notation,

let us agree to write a subscript I to indicate the subset of

the group under consideration, consisting of elements which induce

the identity isomorphism on homotopy groups.

Lemma 2.5 ker()i F(Xn- 1 ) 1 1 (Xn) and 2(F(Xn) are

normal subgroups of the appropriate groups. -1 (X) T (X).
I

Proof:. They are all clearly subgroups. If a e ker(e)I

and P e ker(e ), then V-1 . a • P a ker (p), while on homo-
topy groups (p- 1 .C.p) (pW1 ) (a) (p)# 1

The rest is similar.

Lemma. 2.6 The following diagrams are commutative. ()

1 -- ker()i -- > R(Xn) -'-> F (XnI) -> 1

n n
1 -> ker( ((Xn) (Xn-i I

I - > ker(

i-> 1(Xn) - >xr( I

Proof: The maps in the top rows are simply restrictions of

the corresponding maps in the bottom rows.

II
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Putting these facts together, we get from Lemmas 2.1, 2.5

and 2.6 and Theorem 2.1, the following

Theorem 2.2 Keep the notation of Theorem 2.1. For each n > 3,

we have an exact sequence

1 ->ker(P) -- I->F(Xn-1) 1

Now, it is well known that the nine-lemma is valid on the category

of groups, i.e.

Lemma 2.7 Let A'cA, B'r B, C'r C be normal subgroups.

Suppose we have a commutative diagram

1 1 1

SA' B -> C' ->1

i ~I I
1 1 11

in which the columns are the usual exact sequences. If the first

two rows are exact, then so is the third.

Theorem 2.3 Keep the notation of Theorem 2.1. Then, for each

n > 3, we have an exact sequence

1 -- ker( P)/ker(e ), )N(Xn) >F(Xn I)/1(Xn)-

Prooft Apply lemma 2.7 to lemma 2.6 and Theorem 2.1 and 2.2,

3. Aoolications(3)

We begin the applications with a sequence of finiteness
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theorems. While they are straightforward applications of the

results of section 2, they do not seem to be mentioned in the

literature. We start with an elementary lemma.

Lemma 3.1 If Tr is a finite (resp. fintely-generated) Abelian

group, and X is an Eilenberg-MacLane space K('71", n), then

(X) is a finite (resp. finitely-generated) group.

Proof: We have (X) - Aut(ir) . If 'r is finite, Aut&Tj

is finite. If ir is finitely-generated, we may write

- Z+ . . . +Z+T

where T is a finite group. It is clearly sufficient to show

that Aut(Z + . . . + Z) is finitely-generated. But this

amounts to asking if the group of integer-valued matrices with

determinant of absolute value 1 is finitely-generated. This

last fact is known. ()(See, for example, (3)).

Theorem 3.1 If X has finitely-many non-zero homotopy groups,

each of which is finite, then M(X) is finite.

Proof: Let {Xn, pn,71n ) be a Postnikov system for X

If Xm a K('irm(X) m) is the first non-trivial term, then by
lemma 3.1, (X INx) is finite. We assume, for induction, that

(Xn-I) a finite. Then, r(Xn.I) is finite. It is clear

that Hn(X ;1rn(X)) is finite, so that by Theorem 2.1, ker(p )

and hence •V(X n) is finite.

Remarks I do not know whether Theorem 3.1 is true if one replaces

the word finite by finitely-generated. This theorem is clearly

the crudest theorem one could state in this case. Actually,
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using Theorem 2.1, one can derive information about the order

of elements in •/(X). Details are left to the reader.

In the dame spirit, we have

Theorem 3.2 Let X be an Abelian topological group. We suppose

that

1.) The first non-trivial homotopy group is finitely-

generated.

2.) There are finitely-many remaining homotopy groups,

all of which are finite.

Then M(X is finitely-generated.

Proof: Take a Postnikov system {XnS pn,?1 for which

all k-invariants are zero. Then, we have?(Xn- 1 ) - F (Xn.I)

for all n . The theorem then follows from Lemma 3.1 and

Theoxem 2.1.

Example: Let X = K(Za, 2) x K(Z 2 , 3). We then have

X2.- K(Z2 , 2), X3 - X . Clearly, /(X2) a I . We have an

exact sequence

1 -> ker(%) ----2 3 ) -> 1X-> 1

We determine ker(g3). The homotopy class of f is detormined

by what it does to the two fundamental classes i2 and 13

We have

f (i 2 ) 12 x 1-

f (i 3 ) - 1 x i 3 + p(i 2 ) x 1

where (12 ) is zero or the non-zero element in H 3(Zg, 2, Zg)

Hence, ker(() - ) " Z• No.w, H (X3; ZM) ZM Z•
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However, F(X3) has only 2 elements. To see this, note that

there are four maps (or homotopy classes)

h X 3 >K(Zs, 3)

according as

(h*) (i1) - 1 x i 3, 1 i 2 x 1, 1 x i 3 +51' i 2 x 1, or 0.

In each case, the homotopy equivalence would be

X x 1> K(Zg, 3) x X X .

One readily calculates (h* x 1)* •* in the four cases. The

respective answers are, on (1 x i 3 )

0, i 2 x 1 + 1 x i 3 , Se6-' 12 x 1, 1 x i3

and on (i2 x 1):

i2 x 1, 12 x 1 2 x , x1

Hence, only in the second and fourth cases does one get a homo-

topy equivalence. Thus, ?F(X 3 ) - ker(/() - Z2 , and

of course, I (Xn) n 1 . This last fact may also be checked

directly.

Note that both elements in W(X) induce the identity on

homotopy groups. We recall the following

Def. 3.1 A space X is a Moore space of type (iTr, m); if

H (X ; Z) 0, 1
•IY, t = m

Theorem 2.3 Let {Xn pnOr be any Postnikov system for X,n ~nn
where X is a Moore space of type (17, m), a > 1 . We suppose

Ext (•l,•r'+ 1 (X)) * 0 . Then for each n
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(Xn) Aut (77r)

as a subgroup.

Proof: By the Hurewicz Theorem, X is (m-1) connected.

" f(Xm) - Aut (11) . Suppose •(Xi) C. Aut(1r) for all integers

i ,such that m < i < p . By Theorem 2.1,

1 -> ker(e ) --- >•(Xp+1 ) ->PF (Xp) -> 1

is exact. F(X p) a (Xp)C Aut(IT) . Hence it is sufficient

to show that HP+l(Xp+l ;T Ip+l(X)) - 0 . As X and Xp+l have

the same (p+l)-type

Hp+I(Xp~liqT'p+I(X))-Hom(Hp+I(X;Z),If p+I(X)) + Ext(H p(X;Z)lTrp+1M

ZExt (H(XZ); )P ( Z)T p+l"

If p - m, this is zero by assumption. If p > m, H p(X;Z) - 0

* As an application of this, we have

Cor. 3.1 Let (Xn, pn, nir} be a Postnikov decomposition of

the sphere S , m > 1 . Then

,(Xn) Za , n > m

Proof: By Theorem 3.3. v(Xn) C. Aut(Z) - Z. Let

f : Sm > be a map of degree -1 . Then, f : Xn > Xn

induces a non-trivial automorphism on Tt (X n), so that we have
Zs C (xn) m d

This corollary is of possible interest because relatively

little information is available, at present, about the spaces

X n
n

Cor. 3.2 Let {Xn, p, .Ir } be a Postnikov decomposition of the
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complex projective space CP(m). Then (Xn) d Ze,

for n >2

Proof: CP(m) - S2*.• a4 a 2

cp(-) -U CP(m) - K(Z,2)M

( Z, 11i(CP(m)) w 0 for 2 < i < m . Hence, we have

Hn(Xn ; Ttn(CP(m)) - 0, 1 > 2

Thus, ker((0 ) - , and ? (Xn) C S, (Xn.1) C. Z, . Of course,

this corollary is just a special case of a similar result for

the n-skeleton, n > m, of a space K(IT, m)

Remarks:

1. I would like to point out the following general problems

about the groups M.

a.) What functorial properties does 0/'(X) enjoy? As an

example of the difficulties, let . denote the category of

K(I'j, m) spaces, a > 1 fixed, 17 an abelian group, and homo-

topy classes of maps. Homotopy classes Mfi are in 1-1

correspondence with group homomorphisms. The functorial properties

of f9  on this category (if any) are the same as those of

Aut on the category of Abelian groups.

b.) If (E,F,Bip) is a fibre space, what are the relations

between je(E), C(F) and •(B). Using the naturality properties

of the Moore-Postnikov system, I can obtain information when

F has finitely-many non-zero homotopy groups.

c.) What relations exist between rX) ý(SX) andf (aX) ?

What relations exist betwen (X, (A) andS1C(X/A). when

Ar.X ?
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2. M. Atiyah (1) has determined OV/(BU), as a consequence of

his work on vector bundles. He shows that-IT (But By] is the

image of the functor C of Borel and Serre (4). Along with

Cor. 3.2, one ought to be able to determine 9,(X), when X

is a complex Graseman manifold.

3. If X is a homotopy-Abelian H-space, lt[(,X] is an

Abelian group. Using compostion, a (X) becomes a group of

operators on([X,X], on the left or right. I hope to consider

this case in a subsequent paper.
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FOOTNOTES

1. This work was partially supported by contract NONR 266(57).

2. Actually an isomorphism.

3. Remember that all spaces are assumed to have the homotopy-

type of a 1-connected complex.

4. We interpret F(XnI1) as the subgroup of F(Xn.) whose

elements have pre-images which induce the identity on

homotopy.

5. It is essentially due to Minkowski.
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